Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL (FSRL) solution combines: (i) state augmentation with a semi-adaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairnessdriven reward structure. We evaluate FSRL in several network settings. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.more » « lessFree, publicly-accessible full text available May 26, 2026
- 
            Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.more » « less
- 
            Abstract Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic‐colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer‐specific density, hydrography and currents. Plastic‐degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon‐degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.more » « less
- 
            Abstract Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.more » « less
- 
            Abstract We present the optical–near-infrared spectral energy distributions (SED) and near-infrared variability properties of 30 low-redshift iron low-ionization Broad Absorption Line quasars (FeLoBALQs) and matched samples of LoBALQs and unabsorbed quasars. Significant correlations between the SED properties and accretion rate indicators found among the unabsorbed comparison sample objects suggest an intrinsic origin for SED differences. A range of reddening likely mutes these correlations among the FeLoBAL quasars. The rest-frame optical-band reddening is correlated with the location of the outflow, suggesting a link between the outflows and the presence of dust. We analyzed the WISE variability and provide a correction for photometry uncertainties in an appendix. We found an anticorrelation between the variability amplitude and inferred continuum emission region size, and we suggest that as the origin of the anticorrelation between variability amplitude and luminosity typically observed in quasars. We found that the LoBALQ Optical Emission-line and other parameters are more similar to those of the unabsorbed continuum sample objects than the FeLoBALQs. Thus, FeLoBAL quasars are a special population of objects. We interpret the results using an accretion-rate scenario for FeLoBAL quasars. The high-accretion-rate FeLoBAL quasars are radiating powerfully enough to drive a thick, high-velocity outflow. Quasars with intermediate accretion rates may have an outflow, but it is not sufficiently thick to include Feiiabsorption. Low-accretion-rate FeLoBAL outflows originate in absorption in a failing torus, no longer optically thick enough to reprocess radiation into the near-IR.more » « less
- 
            Bacterial–fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial–fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles ( i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority.more » « less
- 
            Free, publicly-accessible full text available May 12, 2026
- 
            Abstract Broad absorption line quasars are actively accreting supermassive black holes that have strong outflows characterized by broad absorption lines in their rest-UV spectra. Variability in these absorption lines occurs over months to years depending on the source. WPVS 007, a low-redshift, low-luminosity narrow-line Seyfert 1 (NLS1) shows strong variability over shorter timescales, providing a unique opportunity to study the driving mechanism behind this variability that may mimic longer-scale variability in much more massive quasars. We present the first variability study using the spectral synthesis codeSimBAL, which provides velocity-resolved changes in physical conditions of the gas using constraints from multiple absorption lines. Overall, we find WPVS 007 to have a highly ionized outflow with a large mass-loss rate and kinetic luminosity. We determine the primary cause of the absorption-line variability in WPVS 007 to be a change in covering fraction of the continuum by the outflow. This study is the firstSimBALanalysis where multiple epochs of observation were fit simultaneously, demonstrating the ability ofSimBALto use the time domain as an additional constraint in spectral models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
